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Neural plasticity in subareas of the rodent amygdala is widely known to be essential for
Pavlovian threat conditioning and safety learning. However, less consistent results have
been observed in human neuroimaging studies. Here, we identify and test three impor-
tant factors that may contribute to these discrepancies: the temporal profile of amygdala
response in threat conditioning, the anatomical specificity of amygdala responses during
threat conditioning and safety learning, and insufficient power to identify these
responses. We combined data across multiple studies using a well-validated human
threat conditioning paradigm to examine amygdala involvement during threat condi-
tioning and safety learning. In 601 humans, we show that two amygdala subregions
tracked the conditioned stimulus with aversive shock during early conditioning while
only one demonstrated delayed responding to a stimulus not paired with shock. Our
findings identify cross-species similarities in temporal- and anatomical-specific amyg-
dala contributions to threat and safety learning, affirm human amygdala involvement in
associative learning and highlight important factors for future associative learning
research in humans.
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Learning associations between neutral and aversive stimuli is an evolutionarily adaptive
process that occurs rapidly. Pavlovian threat conditioning paradigms are the primary
translational model for this process in laboratory studies, during which a neutral stimu-
lus comes to elicit a defensive response via its pairing with an aversive event. Studies in
rodents have demonstrated the precise neural mechanisms within the amygdala that are
essential for this associative learning (1–3). Studies in humans have also confirmed the
general role of the amygdala in threat conditioning using lesion studies (4–6); yet
neuroimaging studies have yielded less consistent results (7–14). This has led some to
question the translational relevance of the well-established, cross-species role of the
amygdala in threat conditioning (10, 14, 15).
Here, we argue that multiple factors might contribute to inconsistencies in the

amygdala’s involvement in the human threat conditioning literature. One possibility is
that most analytic approaches pay little attention to the temporal trajectory of amyg-
dala responses during associative learning. More often than not, investigators average
blood oxygenation level–dependent (BOLD) response signal across all conditioning tri-
als during threat conditioning. Rodent studies, however, clearly indicate that the amyg-
dala contributes to threat conditioning in a temporally specific manner, with the most
reliable amygdala response occurring early in threat learning (16–18). A few prior neu-
roimaging studies also reported that amygdala BOLD signal was rapidly habituating
during threat conditioning and a subsequent extinction retrieval test in small samples
(7 ∼ 18 subjects) (8, 11, 19). Thus, averaging BOLD signal across an entire learning
phase could result in a weak or minimal amygdala signal detection. Another possibility
is the lack of focus on the amygdala’s anatomical specificity, given that it is composed
of functionally distinct subregions in rodents (1, 3, 20, 21) and humans (22, 23). Aver-
aging BOLD response across these multiple subnuclei could further weaken potential
detection of the amygdala’s contribution to threat conditioning. A third possibility is
insufficient power to detect subtle, time-dependent, and anatomically specific amygdala
responding during threat conditioning. Capturing the amygdala’s phasic and trial-
dependent signal using BOLD imaging could be complicated by: 1) a very low sponta-
neous (baseline) firing rate within amygdala neurons; and 2) conditioning-induced
neural plasticity in the rodent amygdala causing minimal increase in the overall neural
firing rate (averaging about 0.4 to 1 Hz) (18, 21). Therefore, a relatively large sample
might be required to robustly detect amygdala BOLD response to learned threat. Here,
we examined these possibilities by combining data from 601 participants across multi-
ple threat conditioning studies, yielding a large sample that was adequately powered to
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detect the temporal changes of BOLD responses in subareas of
the amygdala during threat and safety learning. All participants
underwent an identical threat conditioning paradigm that
lasted ∼800 s while in functional MRI (fMRI) scanners (SI
Appendix, Fig. S1 and Methods). Subjects were presented with
three different colored lights (red, blue, and yellow) as the
conditioned stimuli (CS). During the first block of the condi-
tioning, one conditioned stimulus (CS+1; e.g., blue light) was
presented for 8 trials; 5 of the 8 presentations coterminated
with a mild electric shock (unconditioned stimulus [US], 62.5%
reinforcement rate). During the second conditioning block,
another light color (e.g., yellow) was presented for 8 trials with a
62.5% reinforcement rate (CS+2). Intermingled with the CS+s
were 16 trials of a different color (e.g., red) that was never paired
with shock (CS).

Results

We first used the same analytic strategy as most neuroimaging
threat conditioning studies by evaluating the whole amygdala
BOLD signal across the experiment in 601 participants. We
compared the mean BOLD response of all 16 CS+ trials to all
16 CS� trials across threat conditioning. This analysis revealed
a significantly higher amygdala BOLD response to the CS+
compared to the CS� (t600 = 2.68, P = 0.008, Fig. 1A), a
finding that supports the majority of fMRI studies in this
domain. Despite this statistically significant result, we note that
the effect size is fairly small (Cohen’s d = 0.12). We reasoned
that this observed small effect size could be due to loss of the

transient signal as a consequence of averaging the BOLD
responses in the amygdala across all conditioning trials. Given
that the rodent amygdala signals the CS+ peak within the first
few conditioning trials (16–18), we focused our next analysis
on the BOLD response within the first 4 CS+ trials and the
corresponding 4 CS� trials. This analysis revealed a robust
amygdala BOLD response to the CS+ compared to the CS�
(t600 = 10.11, P < 0.001, Fig. 1A) with a medium effect size
(Cohen’s d = 0.51). We then examined trial-by-trial amygdala
activation across all 32 CS trials (Fig. 1 B and C). Consistent
with findings in rodents, the amygdala BOLD response was
stronger in the CS+ relative to the CS� early in the threat
acquisition phase and showed rapid habituation thereafter.

Considering the dynamic nature of the amygdala BOLD sig-
nal, we next reasoned that including different subsets of trials and
different sample sizes could influence the statistical results. To
test this, we conducted bootstrap analyses (with bootstrap sample
sizes range from 20 to 500) to examine how different analytic
strategies might influence the likelihood of detecting significant
amygdala BOLD responses (Materials and Methods). In our para-
digm, we found that obtaining consistently significant BOLD
response to the CS+ (>75% detection rate) requires ∼80 subjects
when using trials from the early phase of threat conditioning
(Fig. 1D). Using early trials of both CS+s or all trials from the
first CS+ also led to relatively robust detections of amygdala
response, which required less than 200 subjects to obtain a 75%
detection rate. However, when using this bootstrapping approach
on all conditioning trials, our ability to detect robust activation
was diminished—even with 500 subjects. We also examined the
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Fig. 1. Temporal-specific amygdala response during threat conditioning. (A) Amygdala BOLD response to CS+ was significantly higher relative to CS�.
The tests were conducted either with z-scored BOLD signal from all conditioning trials (t600 = 2.68, P = 0.008, Cohen’s d = 0.12) or early conditioning trials
(first four trials of CS+1 and CS�, t600 = 10.11, P < 0.001, Cohen’s d = 0.51). (B and C) Trial-by-trial amygdala BOLD response to each CS type (B) and differen-
tial response between CS+ and CS� (C). The vertical dashed lines mark the separation of the first and the second CS block. Error bars indicate SEs across
participants. (D and E) Percentage of detected significant activation difference (CS+ vs. CS�) as a function of sample size, separately for CS+ > CS� (D) and
CS� > CS+ (E). The bootstrap resampling procedure was repeated 1,000 times for each sample size (from 20 to 500, step size: 20). ***P < 0.001; **P < 0.01.
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effect size using different analytic strategies and sample sizes (SI
Appendix, Fig. S2). Consistent with the above analysis, using trials
from early threat conditioning led to a medium effect size
(Cohen’s d > 0.5), which was much stronger than using all trials
(Cohen’s d < 0.15). Note that the 95% confidence intervals are
of wide range with bootstrap sample size smaller than 200 (as in
the case of most human threat conditioning studies). This large
sample variability may partially explain the inconsistencies across
studies in detecting the amygdala BOLD response during threat
conditioning. Overall, these results point to the importance of
the temporally dependent nature of amygdala involvement in
threat conditioning (as measured by the BOLD response).
To control for any potential confounds of shock delivery

into the BOLD signal, we conducted additional analyses focus-
ing only on the BOLD response from the six unreinforced
CS+ trials. These analyses revealed a consistent increase in
amygdala BOLD signal to the CS+ vs. CS� in early threat
conditioning (SI Appendix, Fig. S3). As can be noted from SI
Appendix, Fig. S3, our results make clear the need for an even
larger sample size to detect changes in amygdala BOLD signal
to CS+ if fewer trials are selected for the analyses. In addition
to detecting early CS+ vs. CS� BOLD signal in the whole
amygdala, our trial-by-trial analyses in late threat conditioning
show higher BOLD response to the CS� relative to the CS+
(Fig. 1C). To reliably observe this finding, however, a large
sample size is needed (Fig. 1E). Specifically, the highest detec-
tion rate for CS� > CS+ was around 70%, which was
obtained when late trials of the second CS block of 500 sub-
jects were used. If only unreinforced CS+ trials were used, the
detection rate decreased to 30% (SI Appendix, Fig. S3).
To test for the durability of amygdala responsivity to the

CS+ postconditioning, we examined the amygdala BOLD
responses during the early phase of extinction learning (first
four trials immediately after threat conditioning) and early

extinction memory recall (first 4 trial 24 h after threat condi-
tioning). These analyses revealed that amygdala responses were
stronger in the CS+ relative to the CS� at the very beginning
of each of these two phases, then habituated quickly (SI
Appendix, Fig. S4). The results obtained from these analyses are
consistent with rodent studies showing CS-evoked amygdala
activity lasting days to weeks after threat conditioning (24, 25).

We next examined the anatomical specificity of the BOLD
signal associated with conditioned stimuli. We focused on two
broad regions—the basolateral (BLA) and centromedial (CMA)
amygdala, which have been implicated in distinct contributions
to learning and behavioral expression of threat associations in
rodent studies (3, 20, 21). Although it is not currently possible
to dissect the human amygdala with such fine anatomical reso-
lution using MRI, anatomical (22) and functional (26, 27) data
in humans have identified ventral and dorsal amygdala regions
that seem to correspond to the BLA and CMA in rodents. For
the purposes of this study, we therefore refer to these ventral
and dorsal subregions as BLA and CMA, respectively, while
keeping these caveats in mind. We first examined trial-by-trial
BOLD responses of BLA and CMA. Within putative BLA, we
observed initially higher BOLD signal to the CS+ vs. CS�
that quickly habituated across the conditioning phase, as in the
rodent amygdala (Fig. 2 A and B). Moreover, by the late stage
of conditioning, we observed stronger BLA BOLD signal to the
CS� relative to CS+ (Fig. 2 A and C), suggesting the forma-
tion of a “CS� no US” association. Within the dorsal region
(CMA), we observed a peak increase in BOLD signal by the
third trial of threat conditioning that diminished later in the
conditioning phase (Fig. 2 D–F). As in the rodent amygdala,
these findings suggest the development of a learning signal per-
taining to the formation of a CS–US association. No significant
change in BOLD signal was observed late in the threat condi-
tioning phase in CMA.

E
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B C F

Fig. 2. Distinct activation patterns of the two amygdala subdivisions. (A) Trial-by-trial differential BOLD response for BLA. The z-scored BOLD signal differ-
ence between CS+ and CS� is shown for each trial. The vertical dashed line marks the separation of the first and the second CS block. Error bars indicate
SEs across participants. (B and C) Percentage of detected significant BOLD difference (CS+ vs. CS�) as a function of sample size, separately for CS+ > CS�
(B) and CS� > CS� (C). The bootstrap resampling procedure was repeated 1,000 times for each sample size (from 20 to 500, step size: 20). (D–F) Similar as in
A–C, except for CMA.
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To further test the functional distinction between BLA and
CMA, we conducted stimulus-specific (CS+ vs. CS�) func-
tional connectivity analyses (28, 29). We focused on the con-
nectivity between BLA/CMA and brain regions that are central
to threat conditioning and extinction (10, 30–33), including
ventromedial prefrontal cortex (vmPFC), hippocampus (ante-
rior [aHPC] and posterior [pHPC] parts), dorsal anterior cin-
gulate cortex (dACC), and anterior insula (dorsal [dAI] and
ventral [vAI] part). BLA and CMA demonstrated distinct func-
tional connectivity patterns with these regions (Fig. 3). Specifi-
cally, BLA revealed stronger functional connectivity with
aHPC and vmPFC during late stages of threat conditioning. In
contrast, CMA exhibited stronger functional connectivity with
dAI, vAI, pHPC, and dACC compared to BLA (false discovery
rate [FDR] correction, PFDR < 0.05), particularly at the early
stages of threat conditioning. While the significant differences
in functional connectivity subsided during late threat condi-
tioning between some of the nodes, functional connectivity
patterns between CMA, the insular cortex, and the dACC
remained significant throughout most of the threat condition-
ing phase.
Finally, we conducted additional analyses to examine poten-

tial functional connectivity differences between BLA and CMA
and previously defined neural networks (34) known to be criti-
cal for conscious awareness, declarative memory, and attention
processes in humans. The two amygdala subdivisions exhibited
prominent differences in functional connectivity patterns with
these distributed neural systems (SI Appendix, Fig. S5). Thus,
functional connectivity changes between BLA and CMA and
some neural systems showed transient statistical significance,
echoing the temporal changes of BOLD responses, while some
others like ventral attention and frontoparietal control net-
works, showed consistent differences in functional connectivity
throughout most of the conditioning phase.

Discussion

Although there are apparent inconsistencies in finding robust
amygdala activation during threat conditioning paradigms in
humans (7–14), using a well-powered dataset we show a clear
temporal profile for amygdala BOLD responses in threat condi-
tioning. We establish cross-species translation within specific
regions of the human amygdala that contribute to signaling the
acquisition of threat conditioning as well as signaling the safety
of the conditioned stimulus not paired with aversive stimuli.

We identified robust amygdala BOLD responses to condi-
tioned stimuli paired with an aversive event (CS+), particularly
in the early stage of the threat conditioning. The elevated
response to CS+ rapidly habituated after a few trials. This sug-
gests that inconsistencies in amygdala responses across studies
may be because the majority of human neuroimaging studies
assessing threat conditioning have not adequately considered the
temporal trajectory of associative threat learning identified in ani-
mal models. It is well documented in rodent studies that the
amygdala contributes to threat conditioning in a temporally spe-
cific manner, with the most reliable amygdala response occurring
early in learning. For example, studies in rodents have shown
tone responses signaling the CS+ peak within the first three to
four conditioning trials; these responses were no longer measur-
able within the subsequent five to six trials (16–18). However,
fMRI studies typically average BOLD responses to the CS+ and
CS� across all conditioning trials. This is done to reliably esti-
mate the BOLD response, given the relatively low number of
subjects recruited into a single study. Given the evidence from
the animal literature, it should not be surprising that amygdala
activation is not consistently observed when the BOLD response
is averaged across a large number of trials during a long condi-
tioning phase while still applying stringent statistical criteria in
relatively small samples. This view is supported by our results
showing that the effect size in detecting the amygdala BOLD
response increased when we focused on the early stage rather
than the whole threat conditioning.

We demonstrated that the BLA and CMA exhibit distinct
activation patterns during the acquisition of threat condition-
ing. Both BLA and CMA exhibit stronger responses to CS+
than CS� in early conditioning, but only the BLA shows
higher response to CS� than CS+ in late conditioning. This
functional heterogeneity of human amygdala subregions is con-
sistent with findings reported in human resting-state (23, 27)
and task-based (26, 35) fMRI studies, as well as in rodent stud-
ies (3, 20, 21). In the rodent amygdala, the lateral nucleus of
the BLA is often associated with the acquisition of the CS–US
association, whereas the basal nucleus exhibits mixed popula-
tions of neurons; some signal the acquisition of the CS–US
association, while others contribute to extinction learning (3).
The central nucleus of the CMA region is thought to be involved
in response expression, but also has mixed populations that con-
tribute to learning and extinction (20). The development of
the differential BOLD signal of BLA in late acquisition is consis-
tent with data indicating that extinction-learning–induced neural
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firing in subsets of amygdala neurons develop in the later trials
during safety learning (36, 37), support the role of the human
amygdala in associative learning related to safety (CS� is asso-
ciated with no shock) (14, 38). Furthermore, we observed a
distinct pattern of functional connectivity between BLA/CMA
and other brain regions that are central to threat conditioning
and extinction (or the “threat network”). Stronger connections
between BLA and vmPFC and aHPC in late conditioning is
consistent with rodent studies showing a role of the BLA in
safety learning via its connections with the hippocampus and
mPFC and a prominent role of the CMA in signaling threat
conditioning via its connections with the dACC and insular
cortex (36, 39). Beyond the threat network, we observed dis-
tinct functional connectivity between BLA/CMA and multiple
neural systems, suggesting that conditioning-induced neural
plasticity within the amygdala may interact with multiple sub-
cortical and cortical areas involved in conscious awareness of
threat and fear (40–42).
Although we observed some consistency between fMRI data

and rodent neurophysiological measures, it does not necessarily
mean that the fMRI data we report fully represent the complex-
ity of different neuronal subtypes involved in encoding threat
conditioning within the amygdala. Recent rodent studies using
advanced imaging methods have revealed multiple cell types
within the amygdala (43), such that some neurons exhibit up-
or down-regulation of CS-evoked responses, while others
remain responsive across multiple trials during threat condi-
tioning. And given that the BOLD signal reflects global
changes among thousands of neurons, the dynamic changes
occurring among subtypes of single neurons within the amyg-
dala might be underestimated/undetectable in fMRI studies.
It is possible that the strength of the amygdala BOLD signal

and the temporal profile observed in our study might differ
from other studies, given that stimulus types, temporal parame-
ters, and reinforcement rate differ between paradigms. These
paradigm differences may partially explain some inconsistencies
in human threat conditioning studies (10, 14), especially given
that only a subset of studies consider the temporal characteris-
tics of this learning when assessing amygdala BOLD responses
(7, 8, 11, 44). We showed here that detection of a subtle
brain signal requires a large sample size. Another important
factor that will affect the statistical power is the amount of
data acquired from each subject. Recent precision functional
mapping studies have shown that large amounts of fMRI
data from individuals can improve the signal-to-noise ratio and
allow for individual-specific functional neuroanatomy (45, 46),
such as individualized amygdala subdivisions (23). These preci-
sion functional mapping approaches can be applied in future
studies to facilitate detection of the temporally and anatomi-
cally specific amygdala responses during threat conditioning.
In sum, our findings point to the necessity of carefully exam-

ining and modeling temporal dynamics (47), of making ana-
tomical distinctions, and to a critical role for sample size when
evaluating the role of the human amygdala in associative learn-
ing and memory using BOLD imaging.

Materials and Methods

Participants. Neuroimaging data from a total of 601 participants (age: 31.3 ±
12.4; 391 female, 210 male) across multiple studies were included in the analy-
ses. Among these participants, 395 were healthy controls, 114 were diagnosed
with posttraumatic stress disorder, and 92 were diagnosed with anxiety disor-
ders. Impact of diagnoses on amygdala BOLD responses was not considered in
any of the analyses as that is not a primary interest or objective for this study.

Results from different subsets of the participants included in the analyses had
been previously published with different foci and analytic strategies (48–52).
Among participant inclusion criteria were: 18 to 65 y old, proficient in English,
right-handed, and normal or corrected-to-normal vision. The exclusion criteria
included: history of seizures or significant head trauma, current substance abuse
or dependence, metal implants, pregnancy, breastfeeding, or positive urine toxi-
cology screen for drugs of abuse. All participants were recruited at the Massachu-
setts General Hospital. All procedures were approved by the Partners HealthCare
Institutional Review Board of the Massachusetts General Hospital. All participants
provided written informed consent before they participated in the study.

Experimental Design. All participants underwent an identical threat condition-
ing paradigm (SI Appendix, Fig. S1) while BOLD responses were assessed. Before
the experiment, electrodes were attached to the index finger and middle finger
of the participant’s right hand for shock delivery, and participants were instructed
to select the level of electric shock to be used in the experiment, so that the
shock level was highly annoying but nonpainful. The experimental paradigm
started with a habituation stage during which each of the paradigm images
were presented to the participant once, without any electrical stimulation. During
threat conditioning, subjects were presented with three different colored lights
(red, blue, and yellow) within a room image (context) as the CS. The components
of a trial are shown in SI Appendix, Fig. S1A. Specifically, each trial started with a
3-s presentation of the context image, followed by a 6-s presentation of the CS.
In a CS+ trial, the CS coterminated with a 0.5-s electric shock. While in a CS�
trial, the CS presentation was never followed by a shock. The intertrial interval
(fixation image) was 15 s on average (range: 12 ∼ 18 s). The conditioning phase
was divided into two blocks. During the first block, one CS+ (e.g., blue light,
CS+1) was presented for 8 trials, with 5 of the 8 presentations coterminated
with a mild electric shock (62.5% reinforcement rate). Intermingled with this
CS+1 were 8 trials of a different color (e.g., red) that were never paired with
shock (CS�). During the second block, a third light color (e.g., yellow) was pre-
sented for 8 trials with a 62.5% reinforcement rate (CS+2). An additional 8 CS�
trial presentations were intermingled with this CS+2. In total, the conditioning
phase consisted of 32 trials, including 16 CS� trials, 8 CS+1 trials during the
first block, and another 8 CS+2 trials during the second block. The order of trials
was pseudorandom. The colored lights used as CS+s and CS� were counterbal-
anced across participants.

Image Acquisition and Preprocessing. Neuroimaging data were acquired
using three different MRI settings. Data from 119 participants were acquired in
a Trio 3.0 Tesla whole-body MRI scanner (Siemens Medical Systems) using an
8-channel head coil. Functional data were acquired using a T2*-weighted echo-
planar imaging (EPI) pulse sequence (repetition time [TR]: 3.0 s, echo time [TE]:
30 ms, slice number: 45, voxel size: 3 × 3 × 3 mm). Data from 386 participants
were acquired in the same Trio 3.0 Tesla MRI scanner using a 32-channel head
coil. Functional data were acquired using a T2*-weighted EPI pulse sequence
(TR: 2.56 s, TE: 30 ms, slice number: 48, voxel size: 3 × 3 × 3 mm). Imaging
data from 96 participants were acquired on a Siemen’s Prisma 3.0T equipped
with a 32-channel head coil. Functional data were acquired using a T2*-
weighted EPI pulse sequence (TR: 3.0 s, TE: 30 ms, slice number: 48, voxel size:
2.5 × 2.5 × 2.5 mm). High-resolution anatomical images were acquired for
image registration.

Preprocessing was performed using the default pipeline of fMRIPrep
20.0.2—a standard toolbox for automatic fMRI data preprocessing (53). Func-
tional images were corrected for slice timing, realigned, coregistered with the
structural image, normalized into the Montreal Neurological Institute (MNI)
space and smoothed with a 6-mm full-width half-maximum Gaussian kernel.

Regions of Interest. The amygdala mask was obtained from the Harvard–Oxford
subcortical probabilistic atlas. A 50% probability threshold was applied to obtain a
high anatomical specificity of the bilateral amygdala. For subregion analyses, the
CMA and the BLA masks were created using the cytoarchitectonically defined
probabilistic maps via the SPM Anatomy Toolbox (54). For connectivity analyses,
the vmPFC and dACC masks were created using Neurosynth (55). We searched
the keyword “conditioning” and identified the following peak coordinates: vmPFC
(MNIxyz = �2, 46, �10) and dACC (MNIxyz = 0, 14, 28). An 8-mm sphere was
created for each coordinate. For aHPC and pHPC, the Harvard–Oxford subcortical
probabilistic atlas was used (50% threshold). The aHPC and pHPC were separated
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based on the location of the uncal apex in the MNI space (i.e., Y = �21 mm).
The dAI and vAI masks were based on a functionally defined mask (56).

Activation Analyses. For the trial-by-trial BOLD response estimation, we used
the least-squares-all-based generalized linear model (57) implemented via the
Nistats 0.0.1rc toolbox. The model included a regressor for each of the CS pre-
sentations (32 regressors in total) and a regressor for the context presentation.
Each regressor was modeled by convolving the onset of the stimulus with the
two-gamma canonical hemodynamic response function using a duration of 6 s
(CS) or 3 s (context). Other regressors, including the six motion parameters,
high-pass temporal filtering (128 s) terms, and polynomial drift were included in
the model. The volumes with framewise displacement larger than 0.9 were
flagged as outliers and censored from parameter estimation (58). A first-order
autoregressive model was used to account for the temporal structure of the
noise. The contrast map for each trial was computed using a t test and z scored
to assure standardized results that are independent of the number of observa-
tions. The z-scored BOLD response for each trial was averaged across voxels in
the amygdala, BLA, or CMA to represent the BOLD response of each, respectively.
These regional signals were used to compare BOLD responses during CS+ trials
to CS� trials at the group level.

Considering the dynamic nature of the amygdala activity, we examined how
different analytic strategies influence the statistical results. We separately divided
the first and the second block into early and late phase, with each phase consist-
ing of 4 trials of each CS type (SI Appendix, Fig. S1B). We tested seven different
combinations of trials for significant tests, including: 1) all CS+s, which included
16 CS+ trials (8 CS+1, 8 CS+2) and 16 CS� trials; 2) early CS+1, which
included trials from the early phase of the first CS block (4 CS+1, 4 CS�); 3)
early CS+1 and 2, which included trials from the early phase of both the first and
the second CS blocks (4 CS+1, 4 CS+2, 8 CS�); 4) late CS+1, which included
trials from the late phase of the first CS block (4 CS+1, 4 CS�); 5) late CS+2,
which included trials from the late phase of the second CS block (4 CS+2,
4 CS�); 6) late CS+1 and 2, which included trials from the late phases of both
the first and the second CS blocks (4 CS+1, 4CS+2, 8 CS�); 7) early and late
CS+1, which included trials from both the early and the late phases of the first
CS block (8 CS+1, 8 CS�). For each analytic strategy, the z-scored BOLD signals
of the corresponding trials were separately averaged for CS+ and CS� and then
input to a paired t test to test for group-level activation difference (CS+ vs. CS�).

We evaluated the influence of sample size on the statistical results by using
bootstrap analysis. The analysis included the following steps: 1) n participants
were sampled from the total set (i.e., all 601 participants) with replacement; 2)
two-tailed paired t test was used to compare CS+ vs. CS�, and a significant acti-
vation difference was thought to be detected if P < 0.01; 3) steps 1 and 2 were
repeated 1,000 times to calculate the percentage of detected significant activa-
tion difference for CS+ > CS� and CS� > CS+ separately. The above proce-
dure was repeated with n started from 20 to 500 (step size: 20) and for each
analytic strategy.

Connectivity Analyses. We estimated stimulus-specific connectivity using a
recently proposed cofluctuation time series method (28, 29). The method

consisted of the following steps: 1) Let zi = [zi(1),… , zi(T)] and zj = [zj(1),… ,
zj(T)] be the z-scored time series of two regions/voxels i and j (a total of T vol-
umes). We first calculated the componentwise product between zi and zj, to get
a time series cij = [cij(1),… , cij(T)] = [zi(1)*zj (1),… , zi(T)*zj(T)]. 2) We con-
structed a design matrix in a similar way as in the activation analysis. Specifically,
we divided the conditioning phase into twostages (4 CS+ and 4 CS� for each
stage) and constructed two task regressors for each stage (one for CS+, one for
CS�), by convolving the onset of the stimulus with the two-gamma canonical
hemodynamic response function. The context presentations were modeled as
one regressor. 3) The design matrix was input to a general linear model with cij
as the dependent variable and estimated using a first-order autoregressive
model. 4) Stimulus-specific functional connectivity between i and j was then
computed as contrast of parameters (CS+ vs. CS� at each stage here) and fur-
ther z scored for group-level analysis.

We extracted mean time series of BLA/CMA, and estimated the strength of
stimulus-specific connectivity between BLA/CMA and every voxel from other
regions (i.e., vmPFC, dACC, aHPC, pHPC, vAI, and dAI). The mean connectivity
strength across voxels from each region was used for significance testing (two-
tailed paired t test, BLA vs. CMA). We also estimated the connectivity strength
with BLA/CMA at a whole-brain level. Based on prior studies (34, 59, 60), the
whole brain was divided into nine brain networks: visual (VIS), subcortical (SUB),
somatomotor (SMN), ventral attention (VAN), limbic (LIM), dorsal attention
(DAN), default mode (DMN), frontoparietal control (CON), and cerebellum (CBN)
networks. Connectivity strength of voxels from a network was averaged into a
single value to represent the connectivity strength between this network and
BLA or CMA.

Statistical Analyses. Two-tailed paired t test was used to test the BOLD signal
differences between CS+ and CS� and to test the connectivity pattern differ-
ences between CMA and BLA. The FDR method was used for multiple compari-
son correction. Effect size was calculated using Cohen’s d.

Data Availability. Anonymized data and analysis code associated with this
work are available at Open Science Framework (OSF) (https://osf.io/srvx7) (61).
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